# 題目: UVa 11096 - Nails
# 題目說明
給 N
個點 (x, y 平面座標),求這些點形成的 凸包(Convex Hull)
周長
INPUT:
第一行輸入一個整數 T
,代表測資數
每筆測資輸入 L
、 N
,代表橡皮筋長度、點的數量
接下來有 N
行,每行輸入兩個變數 (x, y)
,為點的座標
OUTPUT:
輸出 MAX ( 凸包(Convex Hull)
周長, L
)
# 解題方法
- 如果使用
Graham's Scan
演算法需要做極角排序 - 使用
Andrew's Monotone Chain
演算法
將凸包算出後再兩兩計算長度,加總即為周長
涉及小數,所以題中變數盡量用 double
# 參考程式碼 Graham's Scan
#include <iostream> | |
#include <vector> | |
#include <algorithm> | |
#include <math.h> | |
#include <iomanip> | |
using namespace std; | |
static auto fast_io = [] | |
{ | |
ios::sync_with_stdio(false); | |
cout.tie(nullptr); | |
cin.tie(nullptr); | |
return 0; | |
}(); | |
struct point | |
{ | |
double x; | |
double y; | |
double d; | |
}; | |
vector< point > V; | |
vector< point > ret; | |
int T, N; | |
double L; | |
double dist(point& a, point& b) | |
{ | |
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2)); | |
} | |
double cross(point& o, point& a, point& b) | |
{ | |
return (a.x - o.x) * (b.y - o.y) - (a.y - o.y) * (b.x - o.x); | |
} | |
bool cmp(point& a, point& b) | |
{ | |
auto c = cross(V[0], a, b); | |
return c == 0 ? a.d < b.d : c > 0; | |
} | |
void init() | |
{ | |
V.clear(); | |
ret.clear(); | |
} | |
void read() | |
{ | |
double a, b; | |
cin >> L >> N; | |
for (int i = 0; i < N; ++i) cin >> a >> b, V.push_back({ a, b }); | |
} | |
void GrahamScan() | |
{ | |
sort(V.begin(), V.end(), [](point& a, point& b) | |
{ return a.y < b.y || (a.y == b.y && a.x < b.x); }); | |
for (int i = 1; i < N; ++i) V[i].d = dist(V[0], V[i]); | |
sort(V.begin() + 1, V.end(), cmp); | |
for (int i = 0; i < N; ++i) | |
{ | |
int m = ret.size(); | |
while (m >= 2 && cross(ret[m - 2], ret[m - 1], V[i]) <= 0) | |
{ | |
ret.pop_back(); | |
--m; | |
} | |
ret.emplace_back(V[i]); | |
} | |
ret.emplace_back(V[0]); | |
} | |
void print() | |
{ | |
double ans = 0; | |
for (int i = 1; i < ret.size(); ++i) ans += dist(ret[i - 1], ret[i]); | |
cout << setprecision(5) << fixed << max(ans, L) << "\n"; | |
} | |
int main() | |
{ | |
cin >> T; | |
while (T--) | |
{ | |
init(); | |
read(); | |
GrahamScan(); | |
print(); | |
} | |
} |
# 參考程式碼 Andrew's Monotone Chain
#include <iostream> | |
#include <vector> | |
#include <algorithm> | |
#include <math.h> | |
#include <iomanip> | |
using namespace std; | |
struct point | |
{ | |
double x; | |
double y; | |
}; | |
int T, N; | |
double L; | |
vector<point> V; | |
vector<point> ret; | |
static auto fast_io = [] | |
{ | |
ios::sync_with_stdio(false); | |
cout.tie(nullptr); | |
cin.tie(nullptr); | |
return 0; | |
}(); | |
void init() | |
{ | |
V.clear(); | |
ret.clear(); | |
} | |
void read() | |
{ | |
int a, b; | |
cin >> L >> N; | |
for (int i = 0; i < N; ++i) cin >> a >> b, V.push_back({ a, b }); | |
} | |
double cross(point& o, point& a, point& b) | |
{ | |
return (a.x - o.x) * (b.y - o.y) - (a.y - o.y) * (b.x - o.x); | |
} | |
void Andrews_Monotone_Chain() | |
{ | |
sort(V.begin(), V.end(), [](point& a, point& b) | |
{ return a.y < b.y || (a.y == b.y && a.x < b.x); }); | |
for (int i = 0; i < N; ++i) | |
{ | |
int m = ret.size(); | |
while (m >= 2 && cross(ret[m - 2], ret[m - 1], V[i]) <= 0) | |
{ | |
ret.pop_back(); | |
--m; | |
} | |
ret.emplace_back(V[i]); | |
} | |
for (int i = N - 2, t = ret.size() + 1; i >= 0; --i) | |
{ | |
int m = ret.size(); | |
while (m >= t && cross(ret[m - 2], ret[m - 1], V[i]) <= 0) | |
{ | |
ret.pop_back(); | |
--m; | |
} | |
ret.emplace_back(V[i]); | |
} | |
} | |
double dis(point& a, point& b) | |
{ | |
return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2)); | |
} | |
void print() | |
{ | |
double ans = 0; | |
for (int i = 0; i < ret.size() - 1; ++i) ans += dis(ret[i], ret[i + 1]); | |
cout << setprecision(5) << fixed << max(ans, L) << "\n"; | |
} | |
int main() | |
{ | |
cin >> T; | |
while (T--) | |
{ | |
init(); | |
read(); | |
Andrews_Monotone_Chain(); | |
print(); | |
} | |
} |
# 參考資料
https://github.com/morris821028/UVa/blob/master/volume110/11096%20-%20Nails.cpp
https://blog.csdn.net/mobius_strip/article/details/8453882